

CS16FS1024(3/5/W)

Revision History

Rev. No.	<u>History</u>	Issue Date
1.0	Initial issue	Apr.15,2014
2.0	Add 32TSOPII-400mil pin configuration and outline	May 26, 2014
3.0	Delete 128kx8 products	May 22, 2015
4.0	Add part no. CS16FS10245GC(I)-12 in order information	Jan. 13, 2017
5.0	Revise "Chiplus reserves the right to change product or	Nov. 8, 2021
	specification without notice" to "Chiplus reserves the right to	
	change product or specification after approving by customer."	

1 Rev. 5.0

CS16FS1024(3/5/W)

GENERAL DESCRIPTION

The CS16FS1024(3/5/W) is a 1,048,576-bit high-speed Static Random Access Memory organized as 64K words by 16 bits. The CS16FS1024(3/5/W) uses 16 common input and output lines and have an output enable pin which operates faster than address access time at read cycle, And CS16FS1024(3/5/W) allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using advanced CMOS process,6-TR based cell technology and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The CS16FS1024(3/5/W) is packaged in a 400mil 44-pin TSOP2 and 48FBGA.

FEATURES

- Fast Access Time 8,10,12,15ns(Max)
- CMOS Low Power Dissipation

Standby (TTL): 10mA (Max.)

(CMOS): 6mA (Max.)

Operating: 35mA (8ns, Max..)

: 30mA(10ns ,Max.)

- Single 3.3±0.3V or 5.0±0.5V Power Supply
- Wide range (1.65V~3.6V) of Power Supply
- TTL Compatible inputs and Outputs
- Fully Static Operation, No Clock or Refresh required
- Three State Outputs
- Data Byte Control(x16 Mode)

 \overline{LB} : I/O₀~I/O₇, \overline{UB} : I/O₈~I/O₁₅

- Standard 48FBGA and 44TSOP2 Package Pin Configuration for 64K x 16
- Operating in Commercial and Industrial Temperature range

CS16FS1024(3/5/W)

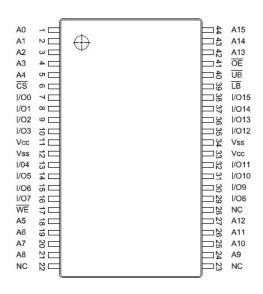
Order Information

Danaitu	0	Part Number	V 00	Spe	eed	Deelsege	Toman
Density	Org.	Part Number	Vcc (V)	t _{AA} (ns)	t _{OE} (ns)	Package	Temp.
		CS16FS10243GC(I)-08	3.3	8	4	44 TSOP2	
			3.3	8	4	44 TSOP2	
		CS16FS1024WGC(I)-08*	2.5	10	5	44 TSOP2	
			1.8	12	6	44 TSOP2	
		CS16FS10243HC(I)-08	3.3	8	4	48 FBGA	
			3.3	8	4	48 FBGA	
		CS16FS1024WHC(I)-08*	2.5	10	5	48 FBGA	
			1.8	12	6	48 FBGA	
1Mb	641/446	CS16FS10245GC(I)-10*	5	10	5	44 TSOP2	C: Commercial
TIVID	04KX10	CS 16FS 10245GC(1)-10	5	12	5	44 TSOP2	l : Industrial
		CS16FS10243GC(I)-10	3.3	10	5	44 TSOP2	
			3.3	10	5	44 TSOP2	
		CS16FS1024WGC(I)-10*	2.5	10	5	44 TSOP2	
			1.8	15	7	44 TSOP2	
		CS16FS10243HC(I)-10	3.3	10	5	48 FBGA	
			3.3	10	5	48 FBGA	
		CS16FS1024WHC(I)-10*	2.5	10	5	48 FBGA	
			1.8	15	7	48 FBGA	

^{*}means max. speed

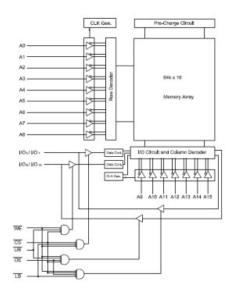
3 Rev. 5.0

CS16FS1024(3/5/W)


PIN CONFIGURATIONS

48ball mini-BGA

	1	2	3	4	5	6
Α	LB	OE	A0	A1	A2	NC
В	108	UB	A3	A4	CS	100
C	109	IO10	A5	A6	101	102
D	Vss	1011	NC	A7	103	Vcc
Е	Vcc	1012	NC	NC	104	Vss
F	1014	IO13	A14	A15	105	106
G	IO15	NC	A12	A13	WE	107
Н	NC	A8	A9	A10	A11	NC


CS16FS1024(3/5/W) - (64k x 16)

44TSOP2-400mil

CS16FS1024(3/5/W)-(64k x 16)

FUNCTIONAL BLOCK DIAGRAM

4 Rev. 5.0

CS16FS1024(3/5/W)

Absolute Maximum Ratings*

Para	ameter	Symbol	Rating	Unit
Voltage on Any Din	3.3V Product			
Voltage on Any Pin Relative to Vss	5.0V Product	Vin, VOUT	-0.5 to Vcc+0.5V	V
Relative to VSS	Wide Vcc** Product			
Voltage on V _{CC}	3.3V Product		-0.5 to 4.6	
Supply Relative to	5.0V Product	V _{in} , V _{OUT}	-0.5 to 7.0	V
Vss	Wide Vcc** Product		-0.5 to 4.6	
Power Dissipation		PD	1.0	W
Storage Temperature		T _{STG}	-65 to 150	°C
Operating Temperatur	e Commercial	TA	0 to 70	°C
Industrial		TA	-40 to 85	°C

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.

Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions*(T_A=0 to 70°C)

Parameter	Operating Vcc(V)	Symbol	Min.	Тур.	Max.	Unit
	5.0	Vcc	4.5	5.0	5.5	
Supply Voltage	3.3	Vcc	3.0	3.3	3.6	
Supply Voltage	Wide 2.4~3.6		2.4	2.5/3.3	3.6] '
	Wide 1.65~2.2	Vcc	1.65	1.8	2.2	
Ground		Vss	0	0	0	\ \
	5.0	ViH	2.2	-	V _{CC} +0.5	
Input High Voltage	n Voltage 3.3		2.0	-	V _{CC} +0.5	V
	Wide 2.4~3.6	VIH	2.0	-	Vcc+0.3	

5 Rev. 5.0

^{**}Wide VCC Range is 1.65V~3.6V

CS16FS1024(3/5/W)

	Wide 1.65~2.2	ViH	1.4	-	Vcc+0.2	
	5.0	VIL	-0.3	-	0.8	
Input Low Voltage	3.3	VIL	-0.3	-	0.8	
Input Low Voltage	Wide 2.4~3.6	V _{IL}	-0.3	-	0.7	\ \
	Wide 1.65~2.2	VIL	-0.2	-	0.4	

^{*}The above parameters are also guaranteed for industrial temperature range.

DC and Operating Characteristics*(T_A=0 to 70°ℂ)

Parameter	Symbol	Test Conditions		Min	Max	Unit
Input Leakage Current	lu	V _{IN} =V _{SS} to V _{CC}	-2	2	uA	
Output Leakage Current**	lLO	\overline{CS} =V _{IH} or \overline{OE} =V _{IH} or \overline{WE} =V _{IL} V _{OUT} =V _{SS} to V _{CC}		-2	2	uA
		Min.Cycle,100% Duty	8ns		35	
Operating	Icc	$\frac{1}{CS}$ = V _{IL} , V _{IN} =V _{IH} or V _{IL} , I _{OUT} = 0mA	10ns	<u>-</u>	30	mA
Current**	100	CB - VIE, VIN-VIH OI VIE,1001- OIIIA	12ns	_	28	'''
			15ns		25	
Standby	IsB	Min. Cycle, \overline{CS} =V _{IH}		-	10	
Current	I _{SB1}	f=0MHz, $\overline{CS} \ge V_{CC}$ -0.2V V _{IN} $\ge V_{CC}$ -0.2V or V _{in} ≤ 0.2 V		_	6	mA
		Vcc =4.5V, IoL=8mA, 5.0V Product		-	0.4	
Output Low Voltage	Vol	V _{CC} =3.0V, I _{OL} =8mA, 3.3V Product & Wi	de	-	0.4	
Level		V _{CC} =2.4V, I _{OL} =1mA, Wide V _{CC} ** Produc	-	0.4	1	
		Vcc=1.65V, IoL=0.1mA, Wide Vcc** Pro-	duct	-	0.2	
Output High		V _{CC} =4.5V, I _{OH} = -4mA, 5.0V Product			-	
Voltage	Vон	V _{CC} =3.0V, I _{OH} = -4mA, 3.3V Product & Wide V _{CC} ** Product			-	V
		V _{CC} =2.4V, I _{OH} = -1mA, Wide V _{CC} ** Produ	uct	1.8	-	

6 **Rev. 5.0**

CS16FS1024(3/5/W)

	V _{CC} =1.65V, I _{OH} = -0.1mA, Wide V _{CC} ** Product	1.4	-		
--	---	-----	---	--	--

^{*}The above parameters are also guarantee for industrial temperature range.

Capacitance*(T_A= 25°C, f= 1.0MHz)

Item	Symbol	Test Conditions	TYP	Max	Unit
Input/ Output Capacitance	C _{I/O}	V _{I/O} =0V	-	8	pF
Input Capacitance	Cin	V _{IN} =0V	-	6	pF

^{*}Capacitance is sampled and not 100% tested.

Test Conditions*

Parameter	Value	
	0 to 3.0V (V _{CC} =3.3V or 5.0V)	
Input/ Output Capacitance	0 to 2.5V (Vcc=2.5V)	
	0 to 1.8V (V _{CC} =1.8V)	
Input Rise and Fall Time	1V/1ns	
Input and Output Timing Deference Levels	1.5V (Vcc=3.3V or 5.0V)	
Input and Output Timing Reference Levels	1/2V _{CC} (V _{CC} = 1.8V or 2.5V)	
Output Load	See Fig. 1	

^{*}The above parameters are also guaranteed for industrial temperature range.

7 Rev. 5.0

^{**}Wide V_{CC} Range is 1.65V ~ 3.6V

CS16FS1024(3/5/W)

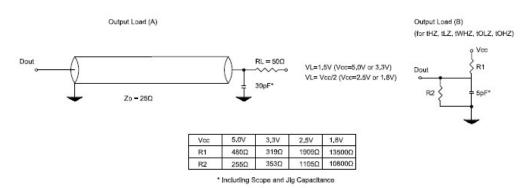


Fig 1

Overshoot Timing

Undershoot Timing

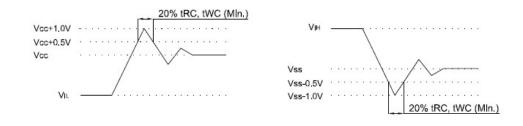


Fig 2

Functional Description (x8 Mode)

\overline{CS}	<u>WE</u>	\overline{OE}	Mode	I/O Pin	Supply Current
Н	Х	X*	Not Select	High-Z	I _{SB} ,I _{SB1}
L	Н	Н	Output Disable	High-Z	Icc
L	Н	L	Read Dout		Icc
Ĺ	Ĺ	X	Write	D _{IN}	Icc

^{*}X means don't care

8 Rev. 5.0

CS16FS1024(3/5/W)

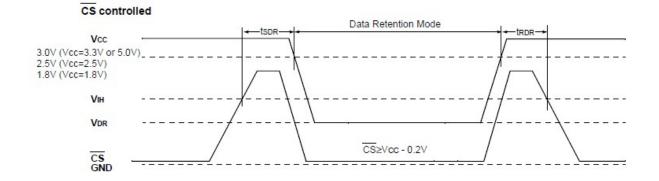
Functional Description (x16 Mode)

\overline{CS}	WE	\overline{OE}	<i>LB</i> **	<u>UB</u> **	Mode	I/O Pin		Supply		
CS	"L	OL			23	OB	mous	I/O ₀ ~I/O ₇	I/O ₈ ~I/O ₁₅	Current
Н	Х	X*	Χ	Х	Not Select	High-Z	High-Z	I _{SB} , I _{SB1}		
L	Н	Н	X	X	Output	High-Z	High-Z	Icc		
L	Х	Х	Н	Н	Disable	i ligit-Z	nigii-Z	ICC		
			L	Н		D оит	High-Z			
L	Н	L	Н	L	Read	High-Z	D _{оит}	Icc		
			L	L		D _{OUT}	D _{OUT}			
			L	Н		Din	High-Z			
L	L	Х	Н	L	Write	High-Z	Din	Icc		
			L	L		Din	Din			

^{*}X means don't care

Data Retention Characteristics*(T_A=0 to 70°C)

Parameter	Product	Operating Vcc(V)	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	5.0V Product	5.0			2.0	-	5.5	V
Vcc for	3.3V Product	3.3	V _{DR}	<u>CS</u> ≥Vcc - 0.2V	2.0	-	3.6	
Data Retention	Wide 2.4V~3.6V	2.5/3.3	V DR		2.0	-	3.6	
	Wide 1.65V~2.2V	1.8			1.5	-	3.6	
Data	5.0V Product	5.0	I _{DR}	Vcc=2.0V	-	-	5	
Retention Current	3.3V Product	3.3		$CS \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	-	-	5	mA
	Wide	2.5/3.3		VINAU.ZV	-	-	6	


9 **Rev. 5.0**

CS16FS1024(3/5/W)

	2.4V~3.6V							
	Wide 1.65V~2.2V	1.8		V _{CC} =1.5V, \overline{CS} ≥V _{CC} - 0.2V, V _{IN} ≥V _{CC} - 0.2V or V _{IN} ≤0.2V	-	-	6	
Data R	Data Retention Set-Up Time		tsdR	See Data	0	-	-	nS
F	Recovery Time	•	t _{RDR}	Retention Wave form (below)	5	1	-	mS

Data Retention Wave form

Read Cycle*

Parameter	Symbol	8ns		10	ns)	12ns		15ns		Unit
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Offic
Read Cycle Time	t _{RC}	8	ı	10	ı	12	Ī	15	-	ns
Address Access Time	taa	-	8	-	10	-	12	-	15	ns
Chip Select to Output	tco	-	8	-	10	-	12	-	15	ns
Output Enable to Valid	t		4		5		6		7	no
Output	toe	-	4	-	J	-	U	-	/	ns

10 **Rev. 5.0**

CS16FS1024(3/5/W)

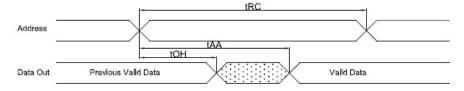
\overline{UB} , \overline{LB} Access Time**	t _{BA}	-	4	-	5	-	6	-	7	ns
Chip Enable to Low-Z Output	t _{LZ}	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	0	-	ns
$\overline{\textit{UB}}$, $\overline{\textit{LB}}$ Enable to Low-Z Output**	t _{BLZ}	0	-	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	tнz	0	4	0	5	0	6	0	7	ns
Output Disable to High-Z Output	tонz	0	4	0	5	0	6	0	7	ns
$\overline{\textit{UB}}$, $\overline{\textit{LB}}$ Disable to High-Z Output**	t _{BHZ}	0	4	0	5	0	6	0	7	ns
Output Hold from Address Change	tон	3	-	3	-	3	-	3	-	ns
Chip Selection Power Up Time	t _{PU}	0	-	0	-	0	-	0	-	ns
Chip Selection Power Down Time	t _{PD}	ı	8	ı	10	ı	12	ı	15	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

Write Cycle*

Parameter	Symbol	8ns		10ns		12ns		15ns		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Offic	
Write Cycle Time	twc	8	-	10	-	12	-	15	-	ns	
Chip Select to End of	tou	6	-	7	-	9	-	12	-	ne	
Write	tcw	O		,						ns	
Address Set-up Time	t _{AS}	0	-	0	-	0	-	0	-	ns	
Address Valid to End	tana	6		7		9		12		nc	
of Write	taw	U	-	,	-	ฮ	-	12	-	ns	

11 Rev. 5.0

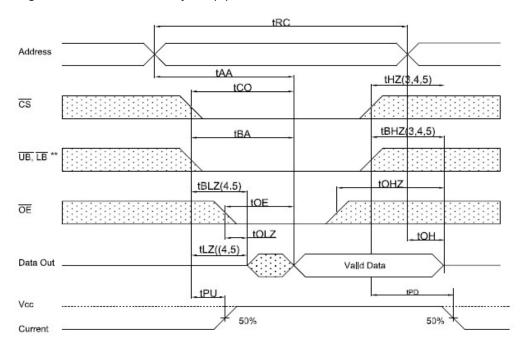

CS16FS1024(3/5/W)

Write Pulse	tura	6		7		9		12		no
Width(\overline{OE} High)	twp	O	-	′	-	9	ı	12	ı	ns
Write Pulse	t wp1	8	_	10	_	12	_	15		ns
Width(\overline{OE} Low)	LVVPI	0	_	10		12	<u>-</u>	13	_	113
$\overline{\it UB}$, $\overline{\it LB}$ Valid to End	t _{BW}	6	_	7	_	9	_	12	_	ns
of Write**	LBVV	U U	_	'	_	9	_	12	_	113
Write Recovery Time	twR	0	-	0	-	0	ı	0	ı	ns
Write to Output	4	0	4	0	5	0	6	0	7	20
High-Z	twnz	U	4	U	3	U	U	U	,	ns
Data to Write Time	t _{DW}	4		5		7		8		no
Overlap	LDW	4	•	5	•	,		0	1	ns
Data Hold from Write	+	0		0		0		0		no
Time	t _{DH}	U	1	U	-	U	-	U	•	ns
End of Write to	tow	3		3		3		3		no
Output Low-Z	tow	3	-	3	-	3	ı	3	-	ns

^{*}The above parameters are also guaranteed for industrial temperature range.

Timing Diagram

Timing Waveform of Read Cycle (1) (Address Controlled, $\overline{CS} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} , $\overline{LB} = V_{IL}^{**}$)


^{**} Those parameters are applied for x16 mode only.

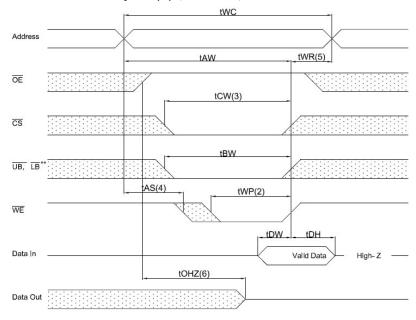
12 **Rev. 5.0**

CS16FS1024(3/5/W)

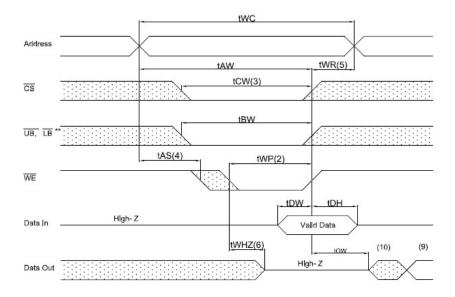
Timing Waveform of Read Cycle (2) (\overline{WE} =VIH)

NOTES (Read Cycle)

- 1. WE is high for read cycle
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels.
- 4. At any given temperature and voltage condition, t_{HZ} (Max.) is less than t_{LZ} (Min.) both for a given device and from
- Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested.
- 6. Device is continuously selected with \overline{CS} =V_{IL}.
- 7. Address valid prior to coincident with CS transition low.
- 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.


13 Rev. 5.0

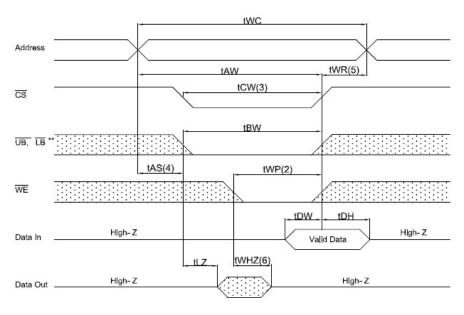
^{**} Those parameters are applied for x16 mode only.


CS16FS1024(3/5/W)

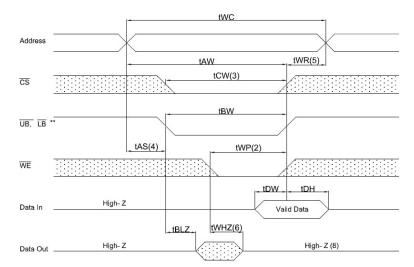
Timing Waveform of Write Cycle (1) (\overline{OE} Clock)

^{**} Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (2) (\overline{OE} =Low fixed)


^{**} Those parameters are applied for x16 mode only.

14 Rev. 5.0


CS16FS1024(3/5/W)

Timing Waveform of Write Cycle (3) (\overline{CS} =Controlled)

** Those parameters are applied for x16 mode only.

Timing Waveform of Write Cycle (4) (\overline{UB} , \overline{LB} Controlled)

15 **Rev. 5.0**

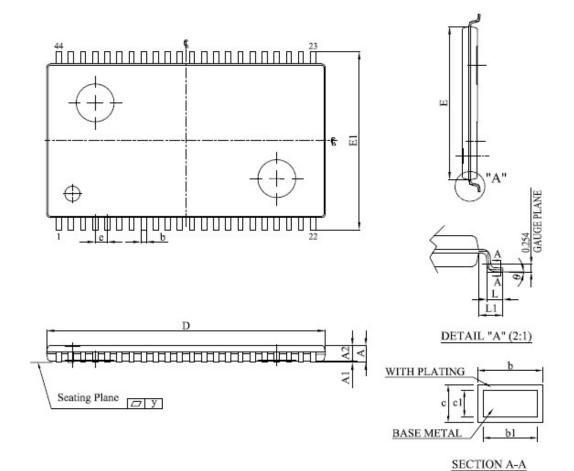
CS16FS1024(3/5/W)

NOTES (Write Cycle)

write to the end of write.

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition \overline{CS} going low and \overline{WE} going low; A write ends at the earliest transition \overline{CS} going high or \overline{WE} going high. t_{WP} is measured from the beginning of
- 3. t_{CW} is measured from the later of \overline{CS} going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. \overline{WE} is measured from the end of write to the address change. t_{WR} applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If \overline{OE} , \overline{CS} and \overline{WE} are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
- 8. If \overline{CS} goes low simultaneously with \overline{WE} going or after WE going low, the outputs remain high impedance state.
- 9. D_{OUT} is the read data of the new address.
- 10. When \overline{CS} is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

16 **Rev. 5.0**

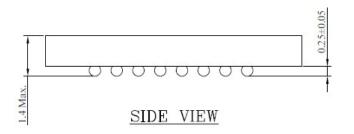

^{**} Those parameters are applied for x16 mode only

CS16FS1024(3/5/W)

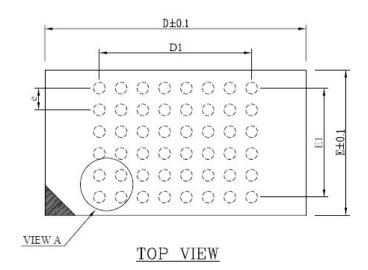
Package outline dimensions

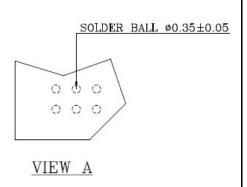
44L-TSOP2-400mil

Note: Plating thickness spec : $0.3 \text{ mil} \sim 0.8 \text{ mil}$.


SY	MBOL	А	Al	A2	b	bl	с	cl	D	Е	E1	e	L	L1	у	Θ
	Min.	1.00	0.05	0.95	0.30	0.30	0.12	0.12	18.31	10.06	11.56	0.70	0.40	0.70		0°
mm	Nom.	1.10	0.10	1.00	1 = 2	-	× - ×	-	18.41	10.16	11.76	0.80	0.50	0.80	-	-
	Max.	1.20	0.15	1.05	0.45	0.40	0.21	0.16	18.51	10.26	11.96	0.90	0.60	0.90	0.1	8°
	Min.	0.0393	0.002	0.037	0.012	0.012	0.005	0.005	0.721	0.396	0.455	0.0275	0.0157	0.0275	-	0°
inch	Nom.	0.0433	0.004	0.039	_ = _	2	, # <u>'</u>	23	0.725	0.400	0.463	0.0315	0.0197	0.0315		_
	Max.	0.0473	0.006	0.041	0.018	0.016	0.008	0.006	0.729	0.404	0.471	0.0355	0.0237	0.0355	0.004	80

17 **Rev. 5.0**




CS16FS1024(3/5/W)

48ball mini-BGA-6x8mm (ball pitch: 0.75mm)

	BALL I	PITCH	e = 0.75						
D E N D1 E1									
8.0	6.0	48	5.25	3.75					

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS.
- 2. PIN#1 DOT MARKING BY LASER OR PAD PRINT.
- 3. SYMBOL "N" IS THE NUMBER OF SOLDER BALLS.

18 **Rev. 5.0**